| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cosscnvex | 
							 |-  ( R e. V -> ,~ `' R e. _V )  | 
						
						
							| 2 | 
							
								
							 | 
							elcnvrefrelsrel | 
							 |-  ( ,~ `' R e. _V -> ( ,~ `' R e. CnvRefRels <-> CnvRefRel ,~ `' R ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( R e. V -> ( ,~ `' R e. CnvRefRels <-> CnvRefRel ,~ `' R ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elrelsrel | 
							 |-  ( R e. V -> ( R e. Rels <-> Rel R ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							anbi12d | 
							 |-  ( R e. V -> ( ( ,~ `' R e. CnvRefRels /\ R e. Rels ) <-> ( CnvRefRel ,~ `' R /\ Rel R ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eldisjs | 
							 |-  ( R e. Disjs <-> ( ,~ `' R e. CnvRefRels /\ R e. Rels ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-disjALTV | 
							 |-  ( Disj R <-> ( CnvRefRel ,~ `' R /\ Rel R ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							3bitr4g | 
							 |-  ( R e. V -> ( R e. Disjs <-> Disj R ) )  |