Metamath Proof Explorer


Theorem eldju1st

Description: The first component of an element of a disjoint union is either (/) or 1o . (Contributed by AV, 26-Jun-2022)

Ref Expression
Assertion eldju1st
|- ( X e. ( A |_| B ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) )

Proof

Step Hyp Ref Expression
1 djuss
 |-  ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) )
2 ssel2
 |-  ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> X e. ( { (/) , 1o } X. ( A u. B ) ) )
3 xp1st
 |-  ( X e. ( { (/) , 1o } X. ( A u. B ) ) -> ( 1st ` X ) e. { (/) , 1o } )
4 elpri
 |-  ( ( 1st ` X ) e. { (/) , 1o } -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) )
5 2 3 4 3syl
 |-  ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) )
6 1 5 mpan
 |-  ( X e. ( A |_| B ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) )