Step |
Hyp |
Ref |
Expression |
1 |
|
djuss |
|- ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) |
2 |
|
ssel2 |
|- ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> X e. ( { (/) , 1o } X. ( A u. B ) ) ) |
3 |
|
xp1st |
|- ( X e. ( { (/) , 1o } X. ( A u. B ) ) -> ( 1st ` X ) e. { (/) , 1o } ) |
4 |
|
elpri |
|- ( ( 1st ` X ) e. { (/) , 1o } -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |
5 |
2 3 4
|
3syl |
|- ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |
6 |
1 5
|
mpan |
|- ( X e. ( A |_| B ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |