| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djuss |  |-  ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) | 
						
							| 2 |  | ssel2 |  |-  ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> X e. ( { (/) , 1o } X. ( A u. B ) ) ) | 
						
							| 3 |  | xp1st |  |-  ( X e. ( { (/) , 1o } X. ( A u. B ) ) -> ( 1st ` X ) e. { (/) , 1o } ) | 
						
							| 4 |  | elpri |  |-  ( ( 1st ` X ) e. { (/) , 1o } -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) | 
						
							| 6 | 1 5 | mpan |  |-  ( X e. ( A |_| B ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |