Metamath Proof Explorer


Theorem eldm2

Description: Membership in a domain. Theorem 4 of Suppes p. 59. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypothesis eldm.1
|- A e. _V
Assertion eldm2
|- ( A e. dom B <-> E. y <. A , y >. e. B )

Proof

Step Hyp Ref Expression
1 eldm.1
 |-  A e. _V
2 eldm2g
 |-  ( A e. _V -> ( A e. dom B <-> E. y <. A , y >. e. B ) )
3 1 2 ax-mp
 |-  ( A e. dom B <-> E. y <. A , y >. e. B )