Metamath Proof Explorer


Theorem eldmeldmressn

Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion eldmeldmressn
|- ( X e. dom F <-> X e. dom ( F |` { X } ) )

Proof

Step Hyp Ref Expression
1 eldmressnsn
 |-  ( X e. dom F -> X e. dom ( F |` { X } ) )
2 elinel2
 |-  ( X e. ( { X } i^i dom F ) -> X e. dom F )
3 dmres
 |-  dom ( F |` { X } ) = ( { X } i^i dom F )
4 2 3 eleq2s
 |-  ( X e. dom ( F |` { X } ) -> X e. dom F )
5 1 4 impbii
 |-  ( X e. dom F <-> X e. dom ( F |` { X } ) )