Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eldmeldmressn | |- ( X e. dom F <-> X e. dom ( F |` { X } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmressnsn | |- ( X e. dom F -> X e. dom ( F |` { X } ) ) |
|
2 | elinel2 | |- ( X e. ( { X } i^i dom F ) -> X e. dom F ) |
|
3 | dmres | |- dom ( F |` { X } ) = ( { X } i^i dom F ) |
|
4 | 2 3 | eleq2s | |- ( X e. dom ( F |` { X } ) -> X e. dom F ) |
5 | 1 4 | impbii | |- ( X e. dom F <-> X e. dom ( F |` { X } ) ) |