Metamath Proof Explorer


Theorem eldmressnsn

Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion eldmressnsn
|- ( A e. dom F -> A e. dom ( F |` { A } ) )

Proof

Step Hyp Ref Expression
1 snidg
 |-  ( A e. dom F -> A e. { A } )
2 dmressnsn
 |-  ( A e. dom F -> dom ( F |` { A } ) = { A } )
3 1 2 eleqtrrd
 |-  ( A e. dom F -> A e. dom ( F |` { A } ) )