Metamath Proof Explorer


Theorem eldmrexrn

Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion eldmrexrn
|- ( Fun F -> ( Y e. dom F -> E. x e. ran F x = ( F ` Y ) ) )

Proof

Step Hyp Ref Expression
1 fvelrn
 |-  ( ( Fun F /\ Y e. dom F ) -> ( F ` Y ) e. ran F )
2 eqid
 |-  ( F ` Y ) = ( F ` Y )
3 eqeq1
 |-  ( x = ( F ` Y ) -> ( x = ( F ` Y ) <-> ( F ` Y ) = ( F ` Y ) ) )
4 3 rspcev
 |-  ( ( ( F ` Y ) e. ran F /\ ( F ` Y ) = ( F ` Y ) ) -> E. x e. ran F x = ( F ` Y ) )
5 1 2 4 sylancl
 |-  ( ( Fun F /\ Y e. dom F ) -> E. x e. ran F x = ( F ` Y ) )
6 5 ex
 |-  ( Fun F -> ( Y e. dom F -> E. x e. ran F x = ( F ` Y ) ) )