Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | eldmrexrn | |- ( Fun F -> ( Y e. dom F -> E. x e. ran F x = ( F ` Y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrn | |- ( ( Fun F /\ Y e. dom F ) -> ( F ` Y ) e. ran F ) |
|
2 | eqid | |- ( F ` Y ) = ( F ` Y ) |
|
3 | eqeq1 | |- ( x = ( F ` Y ) -> ( x = ( F ` Y ) <-> ( F ` Y ) = ( F ` Y ) ) ) |
|
4 | 3 | rspcev | |- ( ( ( F ` Y ) e. ran F /\ ( F ` Y ) = ( F ` Y ) ) -> E. x e. ran F x = ( F ` Y ) ) |
5 | 1 2 4 | sylancl | |- ( ( Fun F /\ Y e. dom F ) -> E. x e. ran F x = ( F ` Y ) ) |
6 | 5 | ex | |- ( Fun F -> ( Y e. dom F -> E. x e. ran F x = ( F ` Y ) ) ) |