Step |
Hyp |
Ref |
Expression |
1 |
|
eldmrexrn |
|- ( Fun F -> ( Y e. dom F -> E. x e. ran F x = ( F ` Y ) ) ) |
2 |
1
|
adantr |
|- ( ( Fun F /\ (/) e/ ran F ) -> ( Y e. dom F -> E. x e. ran F x = ( F ` Y ) ) ) |
3 |
|
eleq1 |
|- ( x = ( F ` Y ) -> ( x e. ran F <-> ( F ` Y ) e. ran F ) ) |
4 |
|
elnelne2 |
|- ( ( ( F ` Y ) e. ran F /\ (/) e/ ran F ) -> ( F ` Y ) =/= (/) ) |
5 |
|
n0 |
|- ( ( F ` Y ) =/= (/) <-> E. y y e. ( F ` Y ) ) |
6 |
|
elfvdm |
|- ( y e. ( F ` Y ) -> Y e. dom F ) |
7 |
6
|
exlimiv |
|- ( E. y y e. ( F ` Y ) -> Y e. dom F ) |
8 |
5 7
|
sylbi |
|- ( ( F ` Y ) =/= (/) -> Y e. dom F ) |
9 |
4 8
|
syl |
|- ( ( ( F ` Y ) e. ran F /\ (/) e/ ran F ) -> Y e. dom F ) |
10 |
9
|
expcom |
|- ( (/) e/ ran F -> ( ( F ` Y ) e. ran F -> Y e. dom F ) ) |
11 |
10
|
adantl |
|- ( ( Fun F /\ (/) e/ ran F ) -> ( ( F ` Y ) e. ran F -> Y e. dom F ) ) |
12 |
11
|
com12 |
|- ( ( F ` Y ) e. ran F -> ( ( Fun F /\ (/) e/ ran F ) -> Y e. dom F ) ) |
13 |
3 12
|
syl6bi |
|- ( x = ( F ` Y ) -> ( x e. ran F -> ( ( Fun F /\ (/) e/ ran F ) -> Y e. dom F ) ) ) |
14 |
13
|
com13 |
|- ( ( Fun F /\ (/) e/ ran F ) -> ( x e. ran F -> ( x = ( F ` Y ) -> Y e. dom F ) ) ) |
15 |
14
|
rexlimdv |
|- ( ( Fun F /\ (/) e/ ran F ) -> ( E. x e. ran F x = ( F ` Y ) -> Y e. dom F ) ) |
16 |
2 15
|
impbid |
|- ( ( Fun F /\ (/) e/ ran F ) -> ( Y e. dom F <-> E. x e. ran F x = ( F ` Y ) ) ) |