| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldprdi.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | eldprdi.w |  |-  W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } | 
						
							| 3 |  | eldprdi.1 |  |-  ( ph -> G dom DProd S ) | 
						
							| 4 |  | eldprdi.2 |  |-  ( ph -> dom S = I ) | 
						
							| 5 |  | eldprdi.3 |  |-  ( ph -> F e. W ) | 
						
							| 6 |  | eqid |  |-  ( G gsum F ) = ( G gsum F ) | 
						
							| 7 |  | oveq2 |  |-  ( f = F -> ( G gsum f ) = ( G gsum F ) ) | 
						
							| 8 | 7 | rspceeqv |  |-  ( ( F e. W /\ ( G gsum F ) = ( G gsum F ) ) -> E. f e. W ( G gsum F ) = ( G gsum f ) ) | 
						
							| 9 | 5 6 8 | sylancl |  |-  ( ph -> E. f e. W ( G gsum F ) = ( G gsum f ) ) | 
						
							| 10 | 1 2 | eldprd |  |-  ( dom S = I -> ( ( G gsum F ) e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. W ( G gsum F ) = ( G gsum f ) ) ) ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> ( ( G gsum F ) e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. W ( G gsum F ) = ( G gsum f ) ) ) ) | 
						
							| 12 | 3 9 11 | mpbir2and |  |-  ( ph -> ( G gsum F ) e. ( G DProd S ) ) |