| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvval.t |
|- T = ( K |`t S ) |
| 2 |
|
dvval.k |
|- K = ( TopOpen ` CCfld ) |
| 3 |
|
eldv.g |
|- G = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
| 4 |
|
eldv.s |
|- ( ph -> S C_ CC ) |
| 5 |
|
eldv.f |
|- ( ph -> F : A --> CC ) |
| 6 |
|
eldv.a |
|- ( ph -> A C_ S ) |
| 7 |
1 2
|
dvfval |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) ) |
| 8 |
4 5 6 7
|
syl3anc |
|- ( ph -> ( ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) ) |
| 9 |
8
|
simpld |
|- ( ph -> ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 10 |
9
|
eleq2d |
|- ( ph -> ( <. B , C >. e. ( S _D F ) <-> <. B , C >. e. U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 11 |
|
df-br |
|- ( B ( S _D F ) C <-> <. B , C >. e. ( S _D F ) ) |
| 12 |
11
|
bicomi |
|- ( <. B , C >. e. ( S _D F ) <-> B ( S _D F ) C ) |
| 13 |
|
sneq |
|- ( x = B -> { x } = { B } ) |
| 14 |
13
|
difeq2d |
|- ( x = B -> ( A \ { x } ) = ( A \ { B } ) ) |
| 15 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 16 |
15
|
oveq2d |
|- ( x = B -> ( ( F ` z ) - ( F ` x ) ) = ( ( F ` z ) - ( F ` B ) ) ) |
| 17 |
|
oveq2 |
|- ( x = B -> ( z - x ) = ( z - B ) ) |
| 18 |
16 17
|
oveq12d |
|- ( x = B -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
| 19 |
14 18
|
mpteq12dv |
|- ( x = B -> ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) ) |
| 20 |
19 3
|
eqtr4di |
|- ( x = B -> ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = G ) |
| 21 |
|
id |
|- ( x = B -> x = B ) |
| 22 |
20 21
|
oveq12d |
|- ( x = B -> ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) = ( G limCC B ) ) |
| 23 |
22
|
opeliunxp2 |
|- ( <. B , C >. e. U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) <-> ( B e. ( ( int ` T ) ` A ) /\ C e. ( G limCC B ) ) ) |
| 24 |
10 12 23
|
3bitr3g |
|- ( ph -> ( B ( S _D F ) C <-> ( B e. ( ( int ` T ) ` A ) /\ C e. ( G limCC B ) ) ) ) |