Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82. (Contributed by NM, 23-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elec.1 | |- A e. _V |
|
elec.2 | |- B e. _V |
||
Assertion | elec | |- ( A e. [ B ] R <-> B R A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elec.1 | |- A e. _V |
|
2 | elec.2 | |- B e. _V |
|
3 | elecg | |- ( ( A e. _V /\ B e. _V ) -> ( A e. [ B ] R <-> B R A ) ) |
|
4 | 1 2 3 | mp2an | |- ( A e. [ B ] R <-> B R A ) |