Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82. (Contributed by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elecg | |- ( ( A e. V /\ B e. W ) -> ( A e. [ B ] R <-> B R A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng | |- ( ( B e. W /\ A e. V ) -> ( A e. ( R " { B } ) <-> <. B , A >. e. R ) ) |
|
2 | 1 | ancoms | |- ( ( A e. V /\ B e. W ) -> ( A e. ( R " { B } ) <-> <. B , A >. e. R ) ) |
3 | df-ec | |- [ B ] R = ( R " { B } ) |
|
4 | 3 | eleq2i | |- ( A e. [ B ] R <-> A e. ( R " { B } ) ) |
5 | df-br | |- ( B R A <-> <. B , A >. e. R ) |
|
6 | 2 4 5 | 3bitr4g | |- ( ( A e. V /\ B e. W ) -> ( A e. [ B ] R <-> B R A ) ) |