Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn1.w |
|- W = ( N ClWWalksN G ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
clwwlknbp |
|- ( Y e. ( N ClWWalksN G ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) |
4 |
3 1
|
eleq2s |
|- ( Y e. W -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) |
5 |
4
|
adantl |
|- ( ( X e. W /\ Y e. W ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) |
6 |
5
|
adantl |
|- ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) |
7 |
6
|
adantr |
|- ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) |
8 |
|
simpl |
|- ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) -> K e. ( 0 ... N ) ) |
9 |
8
|
adantr |
|- ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> K e. ( 0 ... N ) ) |
10 |
|
simpl |
|- ( ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> X = ( Y cyclShift K ) ) |
11 |
10
|
adantl |
|- ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> X = ( Y cyclShift K ) ) |
12 |
|
simprr |
|- ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) |
13 |
9 11 12
|
3jca |
|- ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> ( K e. ( 0 ... N ) /\ X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) |
14 |
|
2cshwcshw |
|- ( ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) -> ( ( K e. ( 0 ... N ) /\ X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) |
15 |
7 13 14
|
sylc |
|- ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) |
16 |
15
|
ex |
|- ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) -> ( ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) |