Description: Elementhood in the restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elecres | |- ( C e. V -> ( C e. [ B ] ( R |` A ) <-> ( B e. A /\ B R C ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relres | |- Rel ( R |` A )  | 
						|
| 2 | relelec | |- ( Rel ( R |` A ) -> ( C e. [ B ] ( R |` A ) <-> B ( R |` A ) C ) )  | 
						|
| 3 | 1 2 | ax-mp | |- ( C e. [ B ] ( R |` A ) <-> B ( R |` A ) C )  | 
						
| 4 | brres | |- ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) )  | 
						|
| 5 | 3 4 | bitrid | |- ( C e. V -> ( C e. [ B ] ( R |` A ) <-> ( B e. A /\ B R C ) ) )  |