| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
| 2 |
1
|
oveq2d |
|- ( n = N -> ( RR ^m ( 1 ... n ) ) = ( RR ^m ( 1 ... N ) ) ) |
| 3 |
|
df-ee |
|- EE = ( n e. NN |-> ( RR ^m ( 1 ... n ) ) ) |
| 4 |
|
ovex |
|- ( RR ^m ( 1 ... N ) ) e. _V |
| 5 |
2 3 4
|
fvmpt |
|- ( N e. NN -> ( EE ` N ) = ( RR ^m ( 1 ... N ) ) ) |
| 6 |
5
|
eleq2d |
|- ( N e. NN -> ( A e. ( EE ` N ) <-> A e. ( RR ^m ( 1 ... N ) ) ) ) |
| 7 |
|
reex |
|- RR e. _V |
| 8 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 9 |
7 8
|
elmap |
|- ( A e. ( RR ^m ( 1 ... N ) ) <-> A : ( 1 ... N ) --> RR ) |
| 10 |
6 9
|
bitrdi |
|- ( N e. NN -> ( A e. ( EE ` N ) <-> A : ( 1 ... N ) --> RR ) ) |