Description: If A is in ( EEN ) , then N is a natural. (Contributed by Scott Fenton, 1-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleenn | |- ( A e. ( EE ` N ) -> N e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ee | |- EE = ( n e. NN |-> ( RR ^m ( 1 ... n ) ) ) |
|
| 2 | 1 | mptrcl | |- ( A e. ( EE ` N ) -> N e. NN ) |