Description: Two ways of saying a function is a mapping of A to itself. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 29-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) | |
| efmndbas.b | |- B = ( Base ` G ) | ||
| Assertion | elefmndbas2 | |- ( F e. V -> ( F e. B <-> F : A --> A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | efmndbas.g | |- G = ( EndoFMnd ` A ) | |
| 2 | efmndbas.b | |- B = ( Base ` G ) | |
| 3 | 1 2 | efmndbasabf |  |-  B = { f | f : A --> A } | 
| 4 | 3 | a1i |  |-  ( F e. V -> B = { f | f : A --> A } ) | 
| 5 | 4 | eleq2d |  |-  ( F e. V -> ( F e. B <-> F e. { f | f : A --> A } ) ) | 
| 6 | feq1 | |- ( f = F -> ( f : A --> A <-> F : A --> A ) ) | |
| 7 | eqid |  |-  { f | f : A --> A } = { f | f : A --> A } | |
| 8 | 6 7 | elab2g |  |-  ( F e. V -> ( F e. { f | f : A --> A } <-> F : A --> A ) ) | 
| 9 | 5 8 | bitrd | |- ( F e. V -> ( F e. B <-> F : A --> A ) ) |