Metamath Proof Explorer


Theorem eleigveccl

Description: Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eleigveccl
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H )

Proof

Step Hyp Ref Expression
1 eleigvec2
 |-  ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) )
2 1 biimpa
 |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) )
3 2 simp1d
 |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H )