Description: Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleigveccl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleigvec2 |  |-  ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) ) | |
| 2 | 1 | biimpa |  |-  ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) | 
| 3 | 2 | simp1d | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) |