Description: If A belongs to a part of C , then A belongs to C . (Contributed by FL, 3-Aug-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | elelpwi | |- ( ( A e. B /\ B e. ~P C ) -> A e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi | |- ( B e. ~P C -> B C_ C ) |
|
2 | 1 | sseld | |- ( B e. ~P C -> ( A e. B -> A e. C ) ) |
3 | 2 | impcom | |- ( ( A e. B /\ B e. ~P C ) -> A e. C ) |