Description: If A belongs to a part of C , then A belongs to C . (Contributed by FL, 3-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elelpwi | |- ( ( A e. B /\ B e. ~P C ) -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | |- ( B e. ~P C -> B C_ C ) |
|
| 2 | 1 | sseld | |- ( B e. ~P C -> ( A e. B -> A e. C ) ) |
| 3 | 2 | impcom | |- ( ( A e. B /\ B e. ~P C ) -> A e. C ) |