Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleq12 | |- ( ( A = B /\ C = D ) -> ( A e. C <-> B e. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = B -> ( A e. C <-> B e. C ) ) |
|
| 2 | eleq2 | |- ( C = D -> ( B e. C <-> B e. D ) ) |
|
| 3 | 1 2 | sylan9bb | |- ( ( A = B /\ C = D ) -> ( A e. C <-> B e. D ) ) |