Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | eleq12 | |- ( ( A = B /\ C = D ) -> ( A e. C <-> B e. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |- ( A = B -> ( A e. C <-> B e. C ) ) |
|
2 | eleq2 | |- ( C = D -> ( B e. C <-> B e. D ) ) |
|
3 | 1 2 | sylan9bb | |- ( ( A = B /\ C = D ) -> ( A e. C <-> B e. D ) ) |