Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eleq12d.1 | |- ( ph -> A = B ) |
|
eleq12d.2 | |- ( ph -> C = D ) |
||
Assertion | eleq12d | |- ( ph -> ( A e. C <-> B e. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12d.1 | |- ( ph -> A = B ) |
|
2 | eleq12d.2 | |- ( ph -> C = D ) |
|
3 | 2 | eleq2d | |- ( ph -> ( A e. C <-> A e. D ) ) |
4 | 1 | eleq1d | |- ( ph -> ( A e. D <-> B e. D ) ) |
5 | 3 4 | bitrd | |- ( ph -> ( A e. C <-> B e. D ) ) |