Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1d.1 |
|- ( ph -> A = B ) |
2 |
|
dfcleq |
|- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
3 |
1 2
|
sylib |
|- ( ph -> A. x ( x e. A <-> x e. B ) ) |
4 |
|
anbi2 |
|- ( ( x e. A <-> x e. B ) -> ( ( x = C /\ x e. A ) <-> ( x = C /\ x e. B ) ) ) |
5 |
4
|
alexbii |
|- ( A. x ( x e. A <-> x e. B ) -> ( E. x ( x = C /\ x e. A ) <-> E. x ( x = C /\ x e. B ) ) ) |
6 |
3 5
|
syl |
|- ( ph -> ( E. x ( x = C /\ x e. A ) <-> E. x ( x = C /\ x e. B ) ) ) |
7 |
|
dfclel |
|- ( C e. A <-> E. x ( x = C /\ x e. A ) ) |
8 |
|
dfclel |
|- ( C e. B <-> E. x ( x = C /\ x e. B ) ) |
9 |
6 7 8
|
3bitr4g |
|- ( ph -> ( C e. A <-> C e. B ) ) |