Metamath Proof Explorer


Theorem eleq2s

Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses eleq2s.1
|- ( A e. B -> ph )
eleq2s.2
|- C = B
Assertion eleq2s
|- ( A e. C -> ph )

Proof

Step Hyp Ref Expression
1 eleq2s.1
 |-  ( A e. B -> ph )
2 eleq2s.2
 |-  C = B
3 2 eleq2i
 |-  ( A e. C <-> A e. B )
4 3 1 sylbi
 |-  ( A e. C -> ph )