Metamath Proof Explorer
Description: Substitution of equal classes into a membership antecedent.
(Contributed by Jonathan Ben-Naim, 3-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
eleq2s.1 |
|- ( A e. B -> ph ) |
|
|
eleq2s.2 |
|- C = B |
|
Assertion |
eleq2s |
|- ( A e. C -> ph ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2s.1 |
|- ( A e. B -> ph ) |
2 |
|
eleq2s.2 |
|- C = B |
3 |
2
|
eleq2i |
|- ( A e. C <-> A e. B ) |
4 |
3 1
|
sylbi |
|- ( A e. C -> ph ) |