Metamath Proof Explorer


Theorem eleq2w

Description: Weaker version of eleq2 (but more general than elequ2 ) not depending on ax-ext nor df-cleq . (Contributed by BJ, 29-Sep-2019)

Ref Expression
Assertion eleq2w
|- ( x = y -> ( A e. x <-> A e. y ) )

Proof

Step Hyp Ref Expression
1 elequ2
 |-  ( x = y -> ( z e. x <-> z e. y ) )
2 1 anbi2d
 |-  ( x = y -> ( ( z = A /\ z e. x ) <-> ( z = A /\ z e. y ) ) )
3 2 exbidv
 |-  ( x = y -> ( E. z ( z = A /\ z e. x ) <-> E. z ( z = A /\ z e. y ) ) )
4 dfclel
 |-  ( A e. x <-> E. z ( z = A /\ z e. x ) )
5 dfclel
 |-  ( A e. y <-> E. z ( z = A /\ z e. y ) )
6 3 4 5 3bitr4g
 |-  ( x = y -> ( A e. x <-> A e. y ) )