Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eleqtrd.1 | |- ( ph -> A e. B ) |
|
| eleqtrd.2 | |- ( ph -> B = C ) |
||
| Assertion | eleqtrd | |- ( ph -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 | |- ( ph -> A e. B ) |
|
| 2 | eleqtrd.2 | |- ( ph -> B = C ) |
|
| 3 | 2 | eleq2d | |- ( ph -> ( A e. B <-> A e. C ) ) |
| 4 | 1 3 | mpbid | |- ( ph -> A e. C ) |