Metamath Proof Explorer


Theorem eleqtrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrid.1
|- A e. B
eleqtrid.2
|- ( ph -> B = C )
Assertion eleqtrid
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eleqtrid.1
 |-  A e. B
2 eleqtrid.2
 |-  ( ph -> B = C )
3 1 a1i
 |-  ( ph -> A e. B )
4 3 2 eleqtrd
 |-  ( ph -> A e. C )