Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eleqtrrdi.1 | |- ( ph -> A e. B ) |
|
| eleqtrrdi.2 | |- C = B |
||
| Assertion | eleqtrrdi | |- ( ph -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrdi.1 | |- ( ph -> A e. B ) |
|
| 2 | eleqtrrdi.2 | |- C = B |
|
| 3 | 2 | eqcomi | |- B = C |
| 4 | 1 3 | eleqtrdi | |- ( ph -> A e. C ) |