Metamath Proof Explorer


Theorem eleqtrri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993)

Ref Expression
Hypotheses eleqtrri.1
|- A e. B
eleqtrri.2
|- C = B
Assertion eleqtrri
|- A e. C

Proof

Step Hyp Ref Expression
1 eleqtrri.1
 |-  A e. B
2 eleqtrri.2
 |-  C = B
3 2 eqcomi
 |-  B = C
4 1 3 eleqtri
 |-  A e. C