Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elequ2 | |- ( x = y -> ( z e. x <-> z e. y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 | |- ( x = y -> ( z e. x -> z e. y ) ) |
|
| 2 | ax9 | |- ( y = x -> ( z e. y -> z e. x ) ) |
|
| 3 | 2 | equcoms | |- ( x = y -> ( z e. y -> z e. x ) ) |
| 4 | 1 3 | impbid | |- ( x = y -> ( z e. x <-> z e. y ) ) |