Metamath Proof Explorer


Theorem elex2OLD

Description: Obsolete version of elex2 as of 30-Nov-2024. (Contributed by Alan Sare, 25-Sep-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion elex2OLD
|- ( A e. B -> E. x x e. B )

Proof

Step Hyp Ref Expression
1 eleq1a
 |-  ( A e. B -> ( x = A -> x e. B ) )
2 1 alrimiv
 |-  ( A e. B -> A. x ( x = A -> x e. B ) )
3 elisset
 |-  ( A e. B -> E. x x = A )
4 exim
 |-  ( A. x ( x = A -> x e. B ) -> ( E. x x = A -> E. x x e. B ) )
5 2 3 4 sylc
 |-  ( A e. B -> E. x x e. B )