Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. ( fi ` B ) -> A e. _V ) |
2 |
1
|
a1i |
|- ( B e. V -> ( A e. ( fi ` B ) -> A e. _V ) ) |
3 |
|
simpr |
|- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> A = |^| x ) |
4 |
|
eldifsni |
|- ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) -> x =/= (/) ) |
5 |
4
|
adantr |
|- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> x =/= (/) ) |
6 |
|
intex |
|- ( x =/= (/) <-> |^| x e. _V ) |
7 |
5 6
|
sylib |
|- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> |^| x e. _V ) |
8 |
3 7
|
eqeltrd |
|- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) -> A e. _V ) |
9 |
8
|
rexlimiva |
|- ( E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x -> A e. _V ) |
10 |
9
|
a1i |
|- ( B e. V -> ( E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x -> A e. _V ) ) |
11 |
|
elfi |
|- ( ( A e. _V /\ B e. V ) -> ( A e. ( fi ` B ) <-> E. x e. ( ~P B i^i Fin ) A = |^| x ) ) |
12 |
|
vprc |
|- -. _V e. _V |
13 |
|
elsni |
|- ( x e. { (/) } -> x = (/) ) |
14 |
13
|
inteqd |
|- ( x e. { (/) } -> |^| x = |^| (/) ) |
15 |
|
int0 |
|- |^| (/) = _V |
16 |
14 15
|
eqtrdi |
|- ( x e. { (/) } -> |^| x = _V ) |
17 |
16
|
eleq1d |
|- ( x e. { (/) } -> ( |^| x e. _V <-> _V e. _V ) ) |
18 |
12 17
|
mtbiri |
|- ( x e. { (/) } -> -. |^| x e. _V ) |
19 |
|
simpr |
|- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> A = |^| x ) |
20 |
|
simpll |
|- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> A e. _V ) |
21 |
19 20
|
eqeltrrd |
|- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> |^| x e. _V ) |
22 |
18 21
|
nsyl3 |
|- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> -. x e. { (/) } ) |
23 |
22
|
biantrud |
|- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> ( x e. ( ~P B i^i Fin ) <-> ( x e. ( ~P B i^i Fin ) /\ -. x e. { (/) } ) ) ) |
24 |
|
eldif |
|- ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) <-> ( x e. ( ~P B i^i Fin ) /\ -. x e. { (/) } ) ) |
25 |
23 24
|
bitr4di |
|- ( ( ( A e. _V /\ B e. V ) /\ A = |^| x ) -> ( x e. ( ~P B i^i Fin ) <-> x e. ( ( ~P B i^i Fin ) \ { (/) } ) ) ) |
26 |
25
|
pm5.32da |
|- ( ( A e. _V /\ B e. V ) -> ( ( A = |^| x /\ x e. ( ~P B i^i Fin ) ) <-> ( A = |^| x /\ x e. ( ( ~P B i^i Fin ) \ { (/) } ) ) ) ) |
27 |
|
ancom |
|- ( ( x e. ( ~P B i^i Fin ) /\ A = |^| x ) <-> ( A = |^| x /\ x e. ( ~P B i^i Fin ) ) ) |
28 |
|
ancom |
|- ( ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) <-> ( A = |^| x /\ x e. ( ( ~P B i^i Fin ) \ { (/) } ) ) ) |
29 |
26 27 28
|
3bitr4g |
|- ( ( A e. _V /\ B e. V ) -> ( ( x e. ( ~P B i^i Fin ) /\ A = |^| x ) <-> ( x e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ A = |^| x ) ) ) |
30 |
29
|
rexbidv2 |
|- ( ( A e. _V /\ B e. V ) -> ( E. x e. ( ~P B i^i Fin ) A = |^| x <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) |
31 |
11 30
|
bitrd |
|- ( ( A e. _V /\ B e. V ) -> ( A e. ( fi ` B ) <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) |
32 |
31
|
expcom |
|- ( B e. V -> ( A e. _V -> ( A e. ( fi ` B ) <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) ) |
33 |
2 10 32
|
pm5.21ndd |
|- ( B e. V -> ( A e. ( fi ` B ) <-> E. x e. ( ( ~P B i^i Fin ) \ { (/) } ) A = |^| x ) ) |