| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flimval.1 |  |-  X = U. J | 
						
							| 2 |  | anass |  |-  ( ( ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) | 
						
							| 3 |  | df-3an |  |-  ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) ) | 
						
							| 4 | 3 | anbi1i |  |-  ( ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) | 
						
							| 5 |  | df-flim |  |-  fLim = ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) | 
						
							| 6 | 5 | elmpocl |  |-  ( A e. ( J fLim F ) -> ( J e. Top /\ F e. U. ran Fil ) ) | 
						
							| 7 | 1 | flimval |  |-  ( ( J e. Top /\ F e. U. ran Fil ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) | 
						
							| 8 | 7 | eleq2d |  |-  ( ( J e. Top /\ F e. U. ran Fil ) -> ( A e. ( J fLim F ) <-> A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) ) | 
						
							| 9 |  | sneq |  |-  ( x = A -> { x } = { A } ) | 
						
							| 10 | 9 | fveq2d |  |-  ( x = A -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { A } ) ) | 
						
							| 11 | 10 | sseq1d |  |-  ( x = A -> ( ( ( nei ` J ) ` { x } ) C_ F <-> ( ( nei ` J ) ` { A } ) C_ F ) ) | 
						
							| 12 | 11 | anbi1d |  |-  ( x = A -> ( ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) <-> ( ( ( nei ` J ) ` { A } ) C_ F /\ F C_ ~P X ) ) ) | 
						
							| 13 | 12 | biancomd |  |-  ( x = A -> ( ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) <-> ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) | 
						
							| 14 | 13 | elrab |  |-  ( A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } <-> ( A e. X /\ ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) | 
						
							| 15 |  | an12 |  |-  ( ( A e. X /\ ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) | 
						
							| 16 | 14 15 | bitri |  |-  ( A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) | 
						
							| 17 | 8 16 | bitrdi |  |-  ( ( J e. Top /\ F e. U. ran Fil ) -> ( A e. ( J fLim F ) <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) | 
						
							| 18 | 6 17 | biadanii |  |-  ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) | 
						
							| 19 | 2 4 18 | 3bitr4ri |  |-  ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |