| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cossex | 
							 |-  ( F e. V -> ,~ F e. _V )  | 
						
						
							| 2 | 
							
								
							 | 
							elcnvrefrelsrel | 
							 |-  ( ,~ F e. _V -> ( ,~ F e. CnvRefRels <-> CnvRefRel ,~ F ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( F e. V -> ( ,~ F e. CnvRefRels <-> CnvRefRel ,~ F ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elrelsrel | 
							 |-  ( F e. V -> ( F e. Rels <-> Rel F ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							anbi12d | 
							 |-  ( F e. V -> ( ( ,~ F e. CnvRefRels /\ F e. Rels ) <-> ( CnvRefRel ,~ F /\ Rel F ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elfunsALTV | 
							 |-  ( F e. FunsALTV <-> ( ,~ F e. CnvRefRels /\ F e. Rels ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-funALTV | 
							 |-  ( FunALTV F <-> ( CnvRefRel ,~ F /\ Rel F ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							3bitr4g | 
							 |-  ( F e. V -> ( F e. FunsALTV <-> FunALTV F ) )  |