Metamath Proof Explorer


Theorem elfvdm

Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007) (Proof shortened by BJ, 22-Oct-2022)

Ref Expression
Assertion elfvdm
|- ( A e. ( F ` B ) -> B e. dom F )

Proof

Step Hyp Ref Expression
1 n0i
 |-  ( A e. ( F ` B ) -> -. ( F ` B ) = (/) )
2 ndmfv
 |-  ( -. B e. dom F -> ( F ` B ) = (/) )
3 1 2 nsyl2
 |-  ( A e. ( F ` B ) -> B e. dom F )