Step |
Hyp |
Ref |
Expression |
1 |
|
elfvmptrab1.f |
|- F = ( x e. V |-> { y e. [_ x / m ]_ M | ph } ) |
2 |
|
elfvmptrab1.v |
|- ( X e. V -> [_ X / m ]_ M e. _V ) |
3 |
|
ne0i |
|- ( Y e. ( F ` X ) -> ( F ` X ) =/= (/) ) |
4 |
|
ndmfv |
|- ( -. X e. dom F -> ( F ` X ) = (/) ) |
5 |
4
|
necon1ai |
|- ( ( F ` X ) =/= (/) -> X e. dom F ) |
6 |
1
|
dmmptss |
|- dom F C_ V |
7 |
6
|
sseli |
|- ( X e. dom F -> X e. V ) |
8 |
|
rabexg |
|- ( [_ X / m ]_ M e. _V -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) |
9 |
7 2 8
|
3syl |
|- ( X e. dom F -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) |
10 |
|
nfcv |
|- F/_ x X |
11 |
|
nfsbc1v |
|- F/ x [. X / x ]. ph |
12 |
|
nfcv |
|- F/_ x M |
13 |
10 12
|
nfcsb |
|- F/_ x [_ X / m ]_ M |
14 |
11 13
|
nfrab |
|- F/_ x { y e. [_ X / m ]_ M | [. X / x ]. ph } |
15 |
|
csbeq1 |
|- ( x = X -> [_ x / m ]_ M = [_ X / m ]_ M ) |
16 |
|
sbceq1a |
|- ( x = X -> ( ph <-> [. X / x ]. ph ) ) |
17 |
15 16
|
rabeqbidv |
|- ( x = X -> { y e. [_ x / m ]_ M | ph } = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
18 |
10 14 17 1
|
fvmptf |
|- ( ( X e. V /\ { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
19 |
7 9 18
|
syl2anc |
|- ( X e. dom F -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
20 |
19
|
eleq2d |
|- ( X e. dom F -> ( Y e. ( F ` X ) <-> Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) ) |
21 |
|
elrabi |
|- ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> Y e. [_ X / m ]_ M ) |
22 |
7 21
|
anim12i |
|- ( ( X e. dom F /\ Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |
23 |
22
|
ex |
|- ( X e. dom F -> ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
24 |
20 23
|
sylbid |
|- ( X e. dom F -> ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
25 |
3 5 24
|
3syl |
|- ( Y e. ( F ` X ) -> ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
26 |
25
|
pm2.43i |
|- ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |