| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvmptrab1.f |  |-  F = ( x e. V |-> { y e. [_ x / m ]_ M | ph } ) | 
						
							| 2 |  | elfvmptrab1.v |  |-  ( X e. V -> [_ X / m ]_ M e. _V ) | 
						
							| 3 |  | ne0i |  |-  ( Y e. ( F ` X ) -> ( F ` X ) =/= (/) ) | 
						
							| 4 |  | ndmfv |  |-  ( -. X e. dom F -> ( F ` X ) = (/) ) | 
						
							| 5 | 4 | necon1ai |  |-  ( ( F ` X ) =/= (/) -> X e. dom F ) | 
						
							| 6 | 1 | dmmptss |  |-  dom F C_ V | 
						
							| 7 | 6 | sseli |  |-  ( X e. dom F -> X e. V ) | 
						
							| 8 |  | rabexg |  |-  ( [_ X / m ]_ M e. _V -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) | 
						
							| 9 | 7 2 8 | 3syl |  |-  ( X e. dom F -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) | 
						
							| 10 |  | nfcv |  |-  F/_ x X | 
						
							| 11 |  | nfsbc1v |  |-  F/ x [. X / x ]. ph | 
						
							| 12 |  | nfcv |  |-  F/_ x M | 
						
							| 13 | 10 12 | nfcsb |  |-  F/_ x [_ X / m ]_ M | 
						
							| 14 | 11 13 | nfrab |  |-  F/_ x { y e. [_ X / m ]_ M | [. X / x ]. ph } | 
						
							| 15 |  | csbeq1 |  |-  ( x = X -> [_ x / m ]_ M = [_ X / m ]_ M ) | 
						
							| 16 |  | sbceq1a |  |-  ( x = X -> ( ph <-> [. X / x ]. ph ) ) | 
						
							| 17 | 15 16 | rabeqbidv |  |-  ( x = X -> { y e. [_ x / m ]_ M | ph } = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) | 
						
							| 18 | 10 14 17 1 | fvmptf |  |-  ( ( X e. V /\ { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) | 
						
							| 19 | 7 9 18 | syl2anc |  |-  ( X e. dom F -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) | 
						
							| 20 | 19 | eleq2d |  |-  ( X e. dom F -> ( Y e. ( F ` X ) <-> Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) ) | 
						
							| 21 |  | elrabi |  |-  ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> Y e. [_ X / m ]_ M ) | 
						
							| 22 | 7 21 | anim12i |  |-  ( ( X e. dom F /\ Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) | 
						
							| 23 | 22 | ex |  |-  ( X e. dom F -> ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) | 
						
							| 24 | 20 23 | sylbid |  |-  ( X e. dom F -> ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) | 
						
							| 25 | 3 5 24 | 3syl |  |-  ( Y e. ( F ` X ) -> ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) | 
						
							| 26 | 25 | pm2.43i |  |-  ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |