Metamath Proof Explorer


Theorem elfvne0

Description: If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024)

Ref Expression
Assertion elfvne0
|- ( A e. ( F ` B ) -> F =/= (/) )

Proof

Step Hyp Ref Expression
1 ne0i
 |-  ( A e. ( F ` B ) -> ( F ` B ) =/= (/) )
2 fveq1
 |-  ( F = (/) -> ( F ` B ) = ( (/) ` B ) )
3 0fv
 |-  ( (/) ` B ) = (/)
4 2 3 eqtrdi
 |-  ( F = (/) -> ( F ` B ) = (/) )
5 4 necon3i
 |-  ( ( F ` B ) =/= (/) -> F =/= (/) )
6 1 5 syl
 |-  ( A e. ( F ` B ) -> F =/= (/) )