Metamath Proof Explorer


Theorem elfvov1

Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 18-May-2025)

Ref Expression
Hypotheses elfvov1.o
|- Rel dom O
elfvov1.s
|- S = ( I O R )
elfvov1.x
|- ( ph -> X e. ( S ` Y ) )
Assertion elfvov1
|- ( ph -> I e. _V )

Proof

Step Hyp Ref Expression
1 elfvov1.o
 |-  Rel dom O
2 elfvov1.s
 |-  S = ( I O R )
3 elfvov1.x
 |-  ( ph -> X e. ( S ` Y ) )
4 n0i
 |-  ( X e. ( S ` Y ) -> -. ( S ` Y ) = (/) )
5 3 4 syl
 |-  ( ph -> -. ( S ` Y ) = (/) )
6 1 ovprc1
 |-  ( -. I e. _V -> ( I O R ) = (/) )
7 2 6 eqtrid
 |-  ( -. I e. _V -> S = (/) )
8 7 fveq1d
 |-  ( -. I e. _V -> ( S ` Y ) = ( (/) ` Y ) )
9 0fv
 |-  ( (/) ` Y ) = (/)
10 8 9 eqtrdi
 |-  ( -. I e. _V -> ( S ` Y ) = (/) )
11 5 10 nsyl2
 |-  ( ph -> I e. _V )