Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 18-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elfvov1.o | |- Rel dom O |
|
elfvov1.s | |- S = ( I O R ) |
||
elfvov1.x | |- ( ph -> X e. ( S ` Y ) ) |
||
Assertion | elfvov1 | |- ( ph -> I e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvov1.o | |- Rel dom O |
|
2 | elfvov1.s | |- S = ( I O R ) |
|
3 | elfvov1.x | |- ( ph -> X e. ( S ` Y ) ) |
|
4 | n0i | |- ( X e. ( S ` Y ) -> -. ( S ` Y ) = (/) ) |
|
5 | 3 4 | syl | |- ( ph -> -. ( S ` Y ) = (/) ) |
6 | 1 | ovprc1 | |- ( -. I e. _V -> ( I O R ) = (/) ) |
7 | 2 6 | eqtrid | |- ( -. I e. _V -> S = (/) ) |
8 | 7 | fveq1d | |- ( -. I e. _V -> ( S ` Y ) = ( (/) ` Y ) ) |
9 | 0fv | |- ( (/) ` Y ) = (/) |
|
10 | 8 9 | eqtrdi | |- ( -. I e. _V -> ( S ` Y ) = (/) ) |
11 | 5 10 | nsyl2 | |- ( ph -> I e. _V ) |