Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 4-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfvov1.o | |- Rel dom O | |
| elfvov1.s | |- S = ( I O R ) | ||
| elfvov1.x | |- ( ph -> X e. ( S ` Y ) ) | ||
| Assertion | elfvov2 | |- ( ph -> R e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfvov1.o | |- Rel dom O | |
| 2 | elfvov1.s | |- S = ( I O R ) | |
| 3 | elfvov1.x | |- ( ph -> X e. ( S ` Y ) ) | |
| 4 | n0i | |- ( X e. ( S ` Y ) -> -. ( S ` Y ) = (/) ) | |
| 5 | 3 4 | syl | |- ( ph -> -. ( S ` Y ) = (/) ) | 
| 6 | 1 | ovprc2 | |- ( -. R e. _V -> ( I O R ) = (/) ) | 
| 7 | 2 6 | eqtrid | |- ( -. R e. _V -> S = (/) ) | 
| 8 | 7 | fveq1d | |- ( -. R e. _V -> ( S ` Y ) = ( (/) ` Y ) ) | 
| 9 | 0fv | |- ( (/) ` Y ) = (/) | |
| 10 | 8 9 | eqtrdi | |- ( -. R e. _V -> ( S ` Y ) = (/) ) | 
| 11 | 5 10 | nsyl2 | |- ( ph -> R e. _V ) |