Metamath Proof Explorer


Theorem elfvunirn

Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm ). (Contributed by Thierry Arnoux, 13-Nov-2016) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025)

Ref Expression
Assertion elfvunirn
|- ( B e. ( F ` A ) -> B e. U. ran F )

Proof

Step Hyp Ref Expression
1 ne0i
 |-  ( B e. ( F ` A ) -> ( F ` A ) =/= (/) )
2 fvn0fvelrn
 |-  ( ( F ` A ) =/= (/) -> ( F ` A ) e. ran F )
3 elssuni
 |-  ( ( F ` A ) e. ran F -> ( F ` A ) C_ U. ran F )
4 1 2 3 3syl
 |-  ( B e. ( F ` A ) -> ( F ` A ) C_ U. ran F )
5 4 sseld
 |-  ( B e. ( F ` A ) -> ( B e. ( F ` A ) -> B e. U. ran F ) )
6 5 pm2.43i
 |-  ( B e. ( F ` A ) -> B e. U. ran F )