| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
| 2 |
|
uzid |
|- ( A e. ZZ -> A e. ( ZZ>= ` A ) ) |
| 3 |
1 2
|
syl |
|- ( A e. NN0 -> A e. ( ZZ>= ` A ) ) |
| 4 |
|
uzaddcl |
|- ( ( A e. ( ZZ>= ` A ) /\ B e. NN0 ) -> ( A + B ) e. ( ZZ>= ` A ) ) |
| 5 |
3 4
|
sylan |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. ( ZZ>= ` A ) ) |
| 6 |
|
fzss2 |
|- ( ( A + B ) e. ( ZZ>= ` A ) -> ( 0 ... A ) C_ ( 0 ... ( A + B ) ) ) |
| 7 |
5 6
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( 0 ... A ) C_ ( 0 ... ( A + B ) ) ) |
| 8 |
7
|
sseld |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. ( 0 ... A ) -> N e. ( 0 ... ( A + B ) ) ) ) |