Metamath Proof Explorer


Theorem elfz0lmr

Description: A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfz0lmr
|- ( K e. ( 0 ... N ) -> ( K = 0 \/ K e. ( 1 ..^ N ) \/ K = N ) )

Proof

Step Hyp Ref Expression
1 elfzlmr
 |-  ( K e. ( 0 ... N ) -> ( K = 0 \/ K e. ( ( 0 + 1 ) ..^ N ) \/ K = N ) )
2 biid
 |-  ( K = 0 <-> K = 0 )
3 0p1e1
 |-  ( 0 + 1 ) = 1
4 3 oveq1i
 |-  ( ( 0 + 1 ) ..^ N ) = ( 1 ..^ N )
5 4 eleq2i
 |-  ( K e. ( ( 0 + 1 ) ..^ N ) <-> K e. ( 1 ..^ N ) )
6 biid
 |-  ( K = N <-> K = N )
7 2 5 6 3orbi123i
 |-  ( ( K = 0 \/ K e. ( ( 0 + 1 ) ..^ N ) \/ K = N ) <-> ( K = 0 \/ K e. ( 1 ..^ N ) \/ K = N ) )
8 1 7 sylib
 |-  ( K e. ( 0 ... N ) -> ( K = 0 \/ K e. ( 1 ..^ N ) \/ K = N ) )