Description: A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elfz0lmr | |- ( K e. ( 0 ... N ) -> ( K = 0 \/ K e. ( 1 ..^ N ) \/ K = N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzlmr | |- ( K e. ( 0 ... N ) -> ( K = 0 \/ K e. ( ( 0 + 1 ) ..^ N ) \/ K = N ) ) |
|
2 | biid | |- ( K = 0 <-> K = 0 ) |
|
3 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
4 | 3 | oveq1i | |- ( ( 0 + 1 ) ..^ N ) = ( 1 ..^ N ) |
5 | 4 | eleq2i | |- ( K e. ( ( 0 + 1 ) ..^ N ) <-> K e. ( 1 ..^ N ) ) |
6 | biid | |- ( K = N <-> K = N ) |
|
7 | 2 5 6 | 3orbi123i | |- ( ( K = 0 \/ K e. ( ( 0 + 1 ) ..^ N ) \/ K = N ) <-> ( K = 0 \/ K e. ( 1 ..^ N ) \/ K = N ) ) |
8 | 1 7 | sylib | |- ( K e. ( 0 ... N ) -> ( K = 0 \/ K e. ( 1 ..^ N ) \/ K = N ) ) |