Metamath Proof Explorer


Theorem elfz1end

Description: A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion elfz1end
|- ( A e. NN <-> A e. ( 1 ... A ) )

Proof

Step Hyp Ref Expression
1 elnnuz
 |-  ( A e. NN <-> A e. ( ZZ>= ` 1 ) )
2 1 biimpi
 |-  ( A e. NN -> A e. ( ZZ>= ` 1 ) )
3 nnz
 |-  ( A e. NN -> A e. ZZ )
4 uzid
 |-  ( A e. ZZ -> A e. ( ZZ>= ` A ) )
5 3 4 syl
 |-  ( A e. NN -> A e. ( ZZ>= ` A ) )
6 eluzfz
 |-  ( ( A e. ( ZZ>= ` 1 ) /\ A e. ( ZZ>= ` A ) ) -> A e. ( 1 ... A ) )
7 2 5 6 syl2anc
 |-  ( A e. NN -> A e. ( 1 ... A ) )
8 elfznn
 |-  ( A e. ( 1 ... A ) -> A e. NN )
9 7 8 impbii
 |-  ( A e. NN <-> A e. ( 1 ... A ) )