Metamath Proof Explorer


Theorem elfz1eq

Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005)

Ref Expression
Assertion elfz1eq
|- ( K e. ( N ... N ) -> K = N )

Proof

Step Hyp Ref Expression
1 elfzle2
 |-  ( K e. ( N ... N ) -> K <_ N )
2 elfzle1
 |-  ( K e. ( N ... N ) -> N <_ K )
3 elfzelz
 |-  ( K e. ( N ... N ) -> K e. ZZ )
4 elfzel2
 |-  ( K e. ( N ... N ) -> N e. ZZ )
5 zre
 |-  ( K e. ZZ -> K e. RR )
6 zre
 |-  ( N e. ZZ -> N e. RR )
7 letri3
 |-  ( ( K e. RR /\ N e. RR ) -> ( K = N <-> ( K <_ N /\ N <_ K ) ) )
8 5 6 7 syl2an
 |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K = N <-> ( K <_ N /\ N <_ K ) ) )
9 3 4 8 syl2anc
 |-  ( K e. ( N ... N ) -> ( K = N <-> ( K <_ N /\ N <_ K ) ) )
10 1 2 9 mpbir2and
 |-  ( K e. ( N ... N ) -> K = N )