Metamath Proof Explorer


Theorem elfz1uz

Description: Membership in a 1-based finite set of sequential integers with an upper integer. (Contributed by AV, 23-Jan-2022)

Ref Expression
Assertion elfz1uz
|- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N e. ( 1 ... M ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N e. NN )
2 eluzle
 |-  ( M e. ( ZZ>= ` N ) -> N <_ M )
3 2 adantl
 |-  ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N <_ M )
4 eluzelz
 |-  ( M e. ( ZZ>= ` N ) -> M e. ZZ )
5 4 adantl
 |-  ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> M e. ZZ )
6 fznn
 |-  ( M e. ZZ -> ( N e. ( 1 ... M ) <-> ( N e. NN /\ N <_ M ) ) )
7 5 6 syl
 |-  ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( N e. ( 1 ... M ) <-> ( N e. NN /\ N <_ M ) ) )
8 1 3 7 mpbir2and
 |-  ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N e. ( 1 ... M ) )