Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elfzd.1 | |- ( ph -> M e. ZZ ) |
|
elfzd.2 | |- ( ph -> N e. ZZ ) |
||
elfzd.3 | |- ( ph -> K e. ZZ ) |
||
elfzd.4 | |- ( ph -> M <_ K ) |
||
elfzd.5 | |- ( ph -> K <_ N ) |
||
Assertion | elfzd | |- ( ph -> K e. ( M ... N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzd.1 | |- ( ph -> M e. ZZ ) |
|
2 | elfzd.2 | |- ( ph -> N e. ZZ ) |
|
3 | elfzd.3 | |- ( ph -> K e. ZZ ) |
|
4 | elfzd.4 | |- ( ph -> M <_ K ) |
|
5 | elfzd.5 | |- ( ph -> K <_ N ) |
|
6 | 1 2 3 | 3jca | |- ( ph -> ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) ) |
7 | 6 4 5 | jca32 | |- ( ph -> ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M <_ K /\ K <_ N ) ) ) |
8 | elfz2 | |- ( K e. ( M ... N ) <-> ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M <_ K /\ K <_ N ) ) ) |
|
9 | 7 8 | sylibr | |- ( ph -> K e. ( M ... N ) ) |