| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lencl | 
							 |-  ( A e. Word V -> ( # ` A ) e. NN0 )  | 
						
						
							| 2 | 
							
								
							 | 
							lencl | 
							 |-  ( B e. Word V -> ( # ` B ) e. NN0 )  | 
						
						
							| 3 | 
							
								
							 | 
							elfz0add | 
							 |-  ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							 |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ccatlen | 
							 |-  ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2d | 
							 |-  ( ( A e. Word V /\ B e. Word V ) -> ( 0 ... ( # ` ( A ++ B ) ) ) = ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq2d | 
							 |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							sylibrd | 
							 |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) )  |