Metamath Proof Explorer


Theorem elfzle3

Description: Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfzle3
|- ( K e. ( M ... N ) -> M <_ N )

Proof

Step Hyp Ref Expression
1 elfzuz2
 |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) )
2 eluzle
 |-  ( N e. ( ZZ>= ` M ) -> M <_ N )
3 1 2 syl
 |-  ( K e. ( M ... N ) -> M <_ N )