Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz2 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) |
2 |
|
fzpred |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
3 |
2
|
eleq2d |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> K e. ( { M } u. ( ( M + 1 ) ... N ) ) ) ) |
4 |
|
elsni |
|- ( K e. { M } -> K = M ) |
5 |
|
elfzr |
|- ( K e. ( ( M + 1 ) ... N ) -> ( K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
6 |
4 5
|
orim12i |
|- ( ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) -> ( K = M \/ ( K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) ) |
7 |
|
elun |
|- ( K e. ( { M } u. ( ( M + 1 ) ... N ) ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) |
8 |
|
3orass |
|- ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) <-> ( K = M \/ ( K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) ) |
9 |
6 7 8
|
3imtr4i |
|- ( K e. ( { M } u. ( ( M + 1 ) ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
10 |
3 9
|
syl6bi |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) ) |
11 |
1 10
|
mpcom |
|- ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |