| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z |  |-  1 e. ZZ | 
						
							| 2 |  | fzsubel |  |-  ( ( ( 1 e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 3 | 1 2 | mpanl1 |  |-  ( ( N e. ZZ /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 4 | 1 3 | mpanr2 |  |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 5 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 6 | 5 | oveq1i |  |-  ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) | 
						
							| 7 | 6 | eleq2i |  |-  ( ( K - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 8 | 4 7 | bitrdi |  |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 9 | 8 | ancoms |  |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ... N ) <-> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |