Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz |
|- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
2 |
|
uznn0sub |
|- ( K e. ( ZZ>= ` M ) -> ( K - M ) e. NN0 ) |
3 |
1 2
|
syl |
|- ( K e. ( M ... N ) -> ( K - M ) e. NN0 ) |
4 |
|
elfzuz2 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) |
5 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
6 |
4 5
|
syl |
|- ( K e. ( M ... N ) -> ( N - M ) e. NN0 ) |
7 |
|
elfzelz |
|- ( K e. ( M ... N ) -> K e. ZZ ) |
8 |
7
|
zred |
|- ( K e. ( M ... N ) -> K e. RR ) |
9 |
|
elfzel2 |
|- ( K e. ( M ... N ) -> N e. ZZ ) |
10 |
9
|
zred |
|- ( K e. ( M ... N ) -> N e. RR ) |
11 |
|
elfzel1 |
|- ( K e. ( M ... N ) -> M e. ZZ ) |
12 |
11
|
zred |
|- ( K e. ( M ... N ) -> M e. RR ) |
13 |
|
elfzle2 |
|- ( K e. ( M ... N ) -> K <_ N ) |
14 |
8 10 12 13
|
lesub1dd |
|- ( K e. ( M ... N ) -> ( K - M ) <_ ( N - M ) ) |
15 |
|
elfz2nn0 |
|- ( ( K - M ) e. ( 0 ... ( N - M ) ) <-> ( ( K - M ) e. NN0 /\ ( N - M ) e. NN0 /\ ( K - M ) <_ ( N - M ) ) ) |
16 |
3 6 14 15
|
syl3anbrc |
|- ( K e. ( M ... N ) -> ( K - M ) e. ( 0 ... ( N - M ) ) ) |