| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzuz |  |-  ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | uznn0sub |  |-  ( K e. ( ZZ>= ` M ) -> ( K - M ) e. NN0 ) | 
						
							| 3 | 1 2 | syl |  |-  ( K e. ( M ... N ) -> ( K - M ) e. NN0 ) | 
						
							| 4 |  | elfzuz2 |  |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 5 |  | uznn0sub |  |-  ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) | 
						
							| 6 | 4 5 | syl |  |-  ( K e. ( M ... N ) -> ( N - M ) e. NN0 ) | 
						
							| 7 |  | elfzelz |  |-  ( K e. ( M ... N ) -> K e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( K e. ( M ... N ) -> K e. RR ) | 
						
							| 9 |  | elfzel2 |  |-  ( K e. ( M ... N ) -> N e. ZZ ) | 
						
							| 10 | 9 | zred |  |-  ( K e. ( M ... N ) -> N e. RR ) | 
						
							| 11 |  | elfzel1 |  |-  ( K e. ( M ... N ) -> M e. ZZ ) | 
						
							| 12 | 11 | zred |  |-  ( K e. ( M ... N ) -> M e. RR ) | 
						
							| 13 |  | elfzle2 |  |-  ( K e. ( M ... N ) -> K <_ N ) | 
						
							| 14 | 8 10 12 13 | lesub1dd |  |-  ( K e. ( M ... N ) -> ( K - M ) <_ ( N - M ) ) | 
						
							| 15 |  | elfz2nn0 |  |-  ( ( K - M ) e. ( 0 ... ( N - M ) ) <-> ( ( K - M ) e. NN0 /\ ( N - M ) e. NN0 /\ ( K - M ) <_ ( N - M ) ) ) | 
						
							| 16 | 3 6 14 15 | syl3anbrc |  |-  ( K e. ( M ... N ) -> ( K - M ) e. ( 0 ... ( N - M ) ) ) |