| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznelfzo |  |-  ( ( M e. ( 0 ... K ) /\ -. M e. ( 1 ..^ K ) ) -> ( M = 0 \/ M = K ) ) | 
						
							| 2 | 1 | ex |  |-  ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) -> ( M = 0 \/ M = K ) ) ) | 
						
							| 3 |  | elfzole1 |  |-  ( M e. ( 1 ..^ K ) -> 1 <_ M ) | 
						
							| 4 |  | elfzolt2 |  |-  ( M e. ( 1 ..^ K ) -> M < K ) | 
						
							| 5 |  | elfzoel2 |  |-  ( M e. ( 1 ..^ K ) -> K e. ZZ ) | 
						
							| 6 |  | elfzoelz |  |-  ( M e. ( 1 ..^ K ) -> M e. ZZ ) | 
						
							| 7 |  | 0lt1 |  |-  0 < 1 | 
						
							| 8 |  | breq1 |  |-  ( M = 0 -> ( M < 1 <-> 0 < 1 ) ) | 
						
							| 9 | 7 8 | mpbiri |  |-  ( M = 0 -> M < 1 ) | 
						
							| 10 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> M e. RR ) | 
						
							| 12 |  | 1red |  |-  ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> 1 e. RR ) | 
						
							| 13 | 11 12 | ltnled |  |-  ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( M < 1 <-> -. 1 <_ M ) ) | 
						
							| 14 | 9 13 | imbitrid |  |-  ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( M = 0 -> -. 1 <_ M ) ) | 
						
							| 15 | 14 | con2d |  |-  ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( 1 <_ M -> -. M = 0 ) ) | 
						
							| 16 |  | zre |  |-  ( K e. ZZ -> K e. RR ) | 
						
							| 17 |  | ltlen |  |-  ( ( M e. RR /\ K e. RR ) -> ( M < K <-> ( M <_ K /\ K =/= M ) ) ) | 
						
							| 18 | 10 16 17 | syl2anr |  |-  ( ( K e. ZZ /\ M e. ZZ ) -> ( M < K <-> ( M <_ K /\ K =/= M ) ) ) | 
						
							| 19 |  | necom |  |-  ( K =/= M <-> M =/= K ) | 
						
							| 20 |  | df-ne |  |-  ( M =/= K <-> -. M = K ) | 
						
							| 21 | 19 20 | sylbb |  |-  ( K =/= M -> -. M = K ) | 
						
							| 22 | 21 | adantl |  |-  ( ( M <_ K /\ K =/= M ) -> -. M = K ) | 
						
							| 23 | 18 22 | biimtrdi |  |-  ( ( K e. ZZ /\ M e. ZZ ) -> ( M < K -> -. M = K ) ) | 
						
							| 24 | 23 | ex |  |-  ( K e. ZZ -> ( M e. ZZ -> ( M < K -> -. M = K ) ) ) | 
						
							| 25 | 24 | com23 |  |-  ( K e. ZZ -> ( M < K -> ( M e. ZZ -> -. M = K ) ) ) | 
						
							| 26 | 25 | impcom |  |-  ( ( M < K /\ K e. ZZ ) -> ( M e. ZZ -> -. M = K ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> -. M = K ) | 
						
							| 28 | 15 27 | jctird |  |-  ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( 1 <_ M -> ( -. M = 0 /\ -. M = K ) ) ) | 
						
							| 29 | 4 5 6 28 | syl21anc |  |-  ( M e. ( 1 ..^ K ) -> ( 1 <_ M -> ( -. M = 0 /\ -. M = K ) ) ) | 
						
							| 30 | 3 29 | mpd |  |-  ( M e. ( 1 ..^ K ) -> ( -. M = 0 /\ -. M = K ) ) | 
						
							| 31 |  | ioran |  |-  ( -. ( M = 0 \/ M = K ) <-> ( -. M = 0 /\ -. M = K ) ) | 
						
							| 32 | 30 31 | sylibr |  |-  ( M e. ( 1 ..^ K ) -> -. ( M = 0 \/ M = K ) ) | 
						
							| 33 | 32 | a1i |  |-  ( M e. ( 0 ... K ) -> ( M e. ( 1 ..^ K ) -> -. ( M = 0 \/ M = K ) ) ) | 
						
							| 34 | 33 | con2d |  |-  ( M e. ( 0 ... K ) -> ( ( M = 0 \/ M = K ) -> -. M e. ( 1 ..^ K ) ) ) | 
						
							| 35 | 2 34 | impbid |  |-  ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) <-> ( M = 0 \/ M = K ) ) ) |