Step |
Hyp |
Ref |
Expression |
1 |
|
elfznelfzo |
|- ( ( M e. ( 0 ... K ) /\ -. M e. ( 1 ..^ K ) ) -> ( M = 0 \/ M = K ) ) |
2 |
1
|
ex |
|- ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) -> ( M = 0 \/ M = K ) ) ) |
3 |
|
elfzole1 |
|- ( M e. ( 1 ..^ K ) -> 1 <_ M ) |
4 |
|
elfzolt2 |
|- ( M e. ( 1 ..^ K ) -> M < K ) |
5 |
|
elfzoel2 |
|- ( M e. ( 1 ..^ K ) -> K e. ZZ ) |
6 |
|
elfzoelz |
|- ( M e. ( 1 ..^ K ) -> M e. ZZ ) |
7 |
|
0lt1 |
|- 0 < 1 |
8 |
|
breq1 |
|- ( M = 0 -> ( M < 1 <-> 0 < 1 ) ) |
9 |
7 8
|
mpbiri |
|- ( M = 0 -> M < 1 ) |
10 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
11 |
10
|
adantl |
|- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> M e. RR ) |
12 |
|
1red |
|- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> 1 e. RR ) |
13 |
11 12
|
ltnled |
|- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( M < 1 <-> -. 1 <_ M ) ) |
14 |
9 13
|
syl5ib |
|- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( M = 0 -> -. 1 <_ M ) ) |
15 |
14
|
con2d |
|- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( 1 <_ M -> -. M = 0 ) ) |
16 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
17 |
|
ltlen |
|- ( ( M e. RR /\ K e. RR ) -> ( M < K <-> ( M <_ K /\ K =/= M ) ) ) |
18 |
10 16 17
|
syl2anr |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( M < K <-> ( M <_ K /\ K =/= M ) ) ) |
19 |
|
necom |
|- ( K =/= M <-> M =/= K ) |
20 |
|
df-ne |
|- ( M =/= K <-> -. M = K ) |
21 |
19 20
|
sylbb |
|- ( K =/= M -> -. M = K ) |
22 |
21
|
adantl |
|- ( ( M <_ K /\ K =/= M ) -> -. M = K ) |
23 |
18 22
|
syl6bi |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( M < K -> -. M = K ) ) |
24 |
23
|
ex |
|- ( K e. ZZ -> ( M e. ZZ -> ( M < K -> -. M = K ) ) ) |
25 |
24
|
com23 |
|- ( K e. ZZ -> ( M < K -> ( M e. ZZ -> -. M = K ) ) ) |
26 |
25
|
impcom |
|- ( ( M < K /\ K e. ZZ ) -> ( M e. ZZ -> -. M = K ) ) |
27 |
26
|
imp |
|- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> -. M = K ) |
28 |
15 27
|
jctird |
|- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( 1 <_ M -> ( -. M = 0 /\ -. M = K ) ) ) |
29 |
4 5 6 28
|
syl21anc |
|- ( M e. ( 1 ..^ K ) -> ( 1 <_ M -> ( -. M = 0 /\ -. M = K ) ) ) |
30 |
3 29
|
mpd |
|- ( M e. ( 1 ..^ K ) -> ( -. M = 0 /\ -. M = K ) ) |
31 |
|
ioran |
|- ( -. ( M = 0 \/ M = K ) <-> ( -. M = 0 /\ -. M = K ) ) |
32 |
30 31
|
sylibr |
|- ( M e. ( 1 ..^ K ) -> -. ( M = 0 \/ M = K ) ) |
33 |
32
|
a1i |
|- ( M e. ( 0 ... K ) -> ( M e. ( 1 ..^ K ) -> -. ( M = 0 \/ M = K ) ) ) |
34 |
33
|
con2d |
|- ( M e. ( 0 ... K ) -> ( ( M = 0 \/ M = K ) -> -. M e. ( 1 ..^ K ) ) ) |
35 |
2 34
|
impbid |
|- ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) <-> ( M = 0 \/ M = K ) ) ) |